Skip to content

pset 5

speller

Implement a program that spell-checks a file, a la the below, using a hash table.

Terminal window
$ ./speller texts/lalaland.txt
MISSPELLED WORDS
[...]
AHHHHHHHHHHHHHHHHHHHHHHHHHHHT
[...]
Shangri
[...]
fianc
[...]
Sebastian's
[...]
WORDS MISSPELLED:
WORDS IN DICTIONARY:
WORDS IN TEXT:
TIME IN load:
TIME IN check:
TIME IN size:
TIME IN unload:
TIME IN TOTAL:
  • Directorydictionaries
    • large
    • small
  • Directorykeys
    • *.txt
  • Directorytexts
    • *.txt
  • dictionary.c
  • dictionary.h
  • Makefile
  • speller.c
  • staff.txt
  • student.txt
dictionary.c
// Implements a dictionary's functionality
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include "dictionary.h"
// Represents a node in a hash table
typedef struct node
{
char word[LENGTH + 1];
struct node *next;
}
node;
// Number of buckets in hash table
const unsigned int N = 223007;
// Number of words in dictionary file
unsigned int word_count = 0;
// Hash table
node *table[N];
// Returns true if word is in dictionary else false
bool check(const char *word)
{
// TODO
unsigned int index = hash(word);
for (node *n = table[index]; n != NULL; n = n->next)
{
if (strcasecmp(n->word, word) == 0)
{
return true;
}
}
return false;
}
// Hashes word to a number
unsigned int hash(const char *word)
{
// TODO
// DJB2 Hash below. Source: http://www.cse.yorku.ca/~oz/hash.html
unsigned int hash = 5381;
int c;
while ((c = *word++))
{
hash = ((hash << 5) + hash) + tolower(c); /* hash * 33 + c */
}
return hash % N;
}
// Loads dictionary into memory, returning true if successful else false
bool load(const char *dictionary)
{
// TODO
FILE *file = fopen(dictionary, "r");
if (file == NULL)
{
return false;
}
char word[LENGTH];
while (fscanf(file, "%s", word) != EOF)
{
node *n = malloc(sizeof(node));
if (n == NULL)
{
return false;
}
strcpy(n->word, word);
n->next = NULL;
unsigned int index = hash(word);
n->next = table[index];
table[index] = n;
word_count++;
}
// Close file stream
fclose(file);
// Success
return true;
}
// Returns number of words in dictionary if loaded else 0 if not yet loaded
unsigned int size(void)
{
// TODO
return word_count;
}
// Unloads dictionary from memory, returning true if successful else false
bool unload(void)
{
// TODO
unsigned int free_count = 0;
for (int i = 0; i < N; i++)
{
for (node *n = table[i]; n != NULL;)
{
node *tmp = n;
n = n->next;
free(tmp);
free_count++;
}
}
if (free_count == size())
{
return true;
}
return false;
}
dictionary.h
// Declares a dictionary's functionality
#ifndef DICTIONARY_H
#define DICTIONARY_H
#include <stdbool.h>
// Maximum length for a word
// (e.g., pneumonoultramicroscopicsilicovolcanoconiosis)
#define LENGTH 45
// Prototypes
bool check(const char *word);
unsigned int hash(const char *word);
bool load(const char *dictionary);
unsigned int size(void);
bool unload(void);
#endif // DICTIONARY_H
speller.c
// Implements a spell-checker
#include <ctype.h>
#include <stdio.h>
#include <sys/resource.h>
#include <sys/time.h>
#include "dictionary.h"
// Undefine any definitions
#undef calculate
#undef getrusage
// Default dictionary
#define DICTIONARY "dictionaries/large"
// Prototype
double calculate(const struct rusage *b, const struct rusage *a);
int main(int argc, char *argv[])
{
// Check for correct number of args
if (argc != 2 && argc != 3)
{
printf("Usage: ./speller [DICTIONARY] text\n");
return 1;
}
// Structures for timing data
struct rusage before, after;
// Benchmarks
double time_load = 0.0, time_check = 0.0, time_size = 0.0, time_unload = 0.0;
// Determine dictionary to use
char *dictionary = (argc == 3) ? argv[1] : DICTIONARY;
// Load dictionary
getrusage(RUSAGE_SELF, &before);
bool loaded = load(dictionary);
getrusage(RUSAGE_SELF, &after);
// Exit if dictionary not loaded
if (!loaded)
{
printf("Could not load %s.\n", dictionary);
return 1;
}
// Calculate time to load dictionary
time_load = calculate(&before, &after);
// Try to open text
char *text = (argc == 3) ? argv[2] : argv[1];
FILE *file = fopen(text, "r");
if (file == NULL)
{
printf("Could not open %s.\n", text);
unload();
return 1;
}
// Prepare to report misspellings
printf("\nMISSPELLED WORDS\n\n");
// Prepare to spell-check
int index = 0, misspellings = 0, words = 0;
char word[LENGTH + 1];
// Spell-check each word in text
for (int c = fgetc(file); c != EOF; c = fgetc(file))
{
// Allow only alphabetical characters and apostrophes
if (isalpha(c) || (c == '\'' && index > 0))
{
// Append character to word
word[index] = c;
index++;
// Ignore alphabetical strings too long to be words
if (index > LENGTH)
{
// Consume remainder of alphabetical string
while ((c = fgetc(file)) != EOF && isalpha(c));
// Prepare for new word
index = 0;
}
}
// Ignore words with numbers (like MS Word can)
else if (isdigit(c))
{
// Consume remainder of alphanumeric string
while ((c = fgetc(file)) != EOF && isalnum(c));
// Prepare for new word
index = 0;
}
// We must have found a whole word
else if (index > 0)
{
// Terminate current word
word[index] = '\0';
// Update counter
words++;
// Check word's spelling
getrusage(RUSAGE_SELF, &before);
bool misspelled = !check(word);
getrusage(RUSAGE_SELF, &after);
// Update benchmark
time_check += calculate(&before, &after);
// Print word if misspelled
if (misspelled)
{
printf("%s\n", word);
misspellings++;
}
// Prepare for next word
index = 0;
}
}
// Check whether there was an error
if (ferror(file))
{
fclose(file);
printf("Error reading %s.\n", text);
unload();
return 1;
}
// Close text
fclose(file);
// Determine dictionary's size
getrusage(RUSAGE_SELF, &before);
unsigned int n = size();
getrusage(RUSAGE_SELF, &after);
// Calculate time to determine dictionary's size
time_size = calculate(&before, &after);
// Unload dictionary
getrusage(RUSAGE_SELF, &before);
bool unloaded = unload();
getrusage(RUSAGE_SELF, &after);
// Abort if dictionary not unloaded
if (!unloaded)
{
printf("Could not unload %s.\n", dictionary);
return 1;
}
// Calculate time to unload dictionary
time_unload = calculate(&before, &after);
// Report benchmarks
printf("\nWORDS MISSPELLED: %d\n", misspellings);
printf("WORDS IN DICTIONARY: %d\n", n);
printf("WORDS IN TEXT: %d\n", words);
printf("TIME IN load: %.2f\n", time_load);
printf("TIME IN check: %.2f\n", time_check);
printf("TIME IN size: %.2f\n", time_size);
printf("TIME IN unload: %.2f\n", time_unload);
printf("TIME IN TOTAL: %.2f\n\n",
time_load + time_check + time_size + time_unload);
// Success
return 0;
}
// Returns number of seconds between b and a
double calculate(const struct rusage *b, const struct rusage *a)
{
if (b == NULL || a == NULL)
{
return 0.0;
}
else
{
return ((((a->ru_utime.tv_sec * 1000000 + a->ru_utime.tv_usec) -
(b->ru_utime.tv_sec * 1000000 + b->ru_utime.tv_usec)) +
((a->ru_stime.tv_sec * 1000000 + a->ru_stime.tv_usec) -
(b->ru_stime.tv_sec * 1000000 + b->ru_stime.tv_usec)))
/ 1000000.0);
}
}


© 2020-2025 Ucchas Muhury